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Abstract

Prime numbers plays a critical role in encryption algo-
rithms. The security of RSA relies on an assumption: We
hope there is no algorithm capable of factorize a big num-
ber in polynomial time. A RSA public key constitute of a
few prime factors for more security. We use this fact as a
constraint to simplify the problem of factorizing RSA public
key as follows: ”In a RSA public keysome factorsis near
to all factors.

In this paper we findRepunit numbers1 as an interesting
set of numbers. We show that the set of all repunits contains
all of prime numbers. We provide some theorems to show
the relation between repunits and prime numbers. As an
advantage of using abbreviated form of repunits we notice
their low space complexity. Then we introduce our method
to factorize big numbers based on repunits and their abbre-
viated form.

1. Introduction

Primes, primes, primes. Why are they so important for
us? Why factorizing numbers to primes are so interesting.
We live in a digital world and we need to feel secure. I want
to emphasize the fact that we owe this security to some fea-
tures of prime numbers which even has not proofed yet! We
are feeling secure while there is no proof to deny existence
of polynomial algorithm to factorize a number mathemati-
cally.

1.1 Problem

In RSA we trust that there is no fast algorithm to fac-
torize a big number to prime numbers in a polynomial time.

1Numbers like1, 11, . . . or formallyRn = (10n − 1)/9 for n ≥ 1

Factorization algorithms are designed to factorize numbers
into primes. But in RSA, we are satisfied even if we have
some factors of the big number2. In fact in RSA public keys
some factorsis near toall factors, because factors are so
large and the number of them is really few(We can consider
it 2). Providing this idea we declare the problem as:

How can we factorize a big number to some fac-
tors?

The idea provided by this paper claim a new method
(Repunit Method) for factorization algorithms. We show
the relation between repunits and prime numbers. Having
introduced this relation we propose some methods to factor-
ize a big number which usually used as RSA public keys.

There are some few papers published in the domain of
repunit numbers. Most of discussion around the repunits
focuses onPrime Repunits. In fact the race of finding big-
ger prime repunit attracts the most energy of repunit work-
ers! [1][5][6]

Chris K. Caldwell and Harvey Dubner [1] used repunits
to findUnique period primes. S. Yates [5, 6] also have done
lots of jobs for Unique period primes.

A. Slinko [3] used repunits to findAbsolute primes. Also
he presented some useful properties for repunits. He used
repunits to find absolute primes and also he presented some
theorems which are useful to test primeness of a repunit.

Unfortunately there is not any paper to show the strong
relation between repunits and primes. This is the topic
which we are going to invest in this paper.

1.2 Terminology

In this section we introduce elementary definitions and
abbreviations which we use in the paper.

2A big number is considered as a big composite number with few big
factors.



• Repunit number. In recreational mathematics, a re-
punit is a number like 11, 111, or 1111 that contains
only the digit 1. The term stands for repeated unit and
was coined in 1966 by A.H. Beiler. The repunits are
defined mathematically as:

R(n) =
10n − 1

9
for n ≥ 1

• Big number. A big number is considered as a big com-
posite number with few big factors. In this paper we
assume we have big numbers with no factor of2, 3 and
5. In fact finding this factors is easy so we can ignore
them easily.

2 Previous Works

This chapter contains the basic algorithms and theorems
which the idea of this paper is based on. First of all we ex-
plore some of the most important availableprime factoriza-
tion algorithms. Then we propose a few familiar theorems
with their proofs so we can cite them in the next sections.

2.1 Simple Factorization Algorithm

The simplest algorithm to factorize a number is abrute
forcealgorithm. Algorithm 2.1 checks if the number is di-
visible to any of the numbers lower than it.

SimpleFactorizing(n:integer):Array
AnswerList =∅
i=2
Do

If i mod n = 0 Then
AnswerList = AnswerList∪ i and

End If
i = i+1 // Get Next factor to test.

Loop While(i < n )
Return AnswerList

Algorithm 2.1 The famous algorithm from Euclid to fac-
torize numbers is very simple and construct the base of our
methods.

Proposition 2.1 Consider about optimizations we can do
on the algorithm 2.1 to improve its running time. First we
can decrease the upper bound of probable divisors to

√
n

instead ofn. But a better optimization is to select more
appropriate divisors. There is no need to test all numbers
lower thann to find its factors. If we choose just the primes

lower thann(or even
√

n) we satisfy the correctness of al-
gorithm and nothing is lost yet. So we should have a list
of primes ready, but we are in middle of finding primes in
this algorithm how could we have the prime list? This is the
problem which forces us to test all divisors lower thann.

The Repunit Method tries to use animplicit list of primesin
middle of finding primes.

2.2 Finding GCD Algorithms

Calculating GCD of two numbers is so important for us.
We use it as a primary operation in next sections. So we
need to know its computing complexity and also have an
appropriate algorithm to do it.

Theroem 2.2 The complexity of finding theGCD(n, m)
for n ≤ m is O(log n).

Here comes the famousEuclid’s algorithm to calculate
GCD(m,n).

EuclidGCD(m, n)
If n = 0 Return m
Else Return EuclidGCD(m, m mod n)

Algorithm 2.2 Euclid’s algorithm for calculating GCD.

Theroem 2.3 Complexity of calculatingGCD(n, m) (us-
ing Euclid’s algorithm) forn ≤ m is O(log n).

O(GCD(m,n)) = O(log n)

Proof. It can be proved in various ways. All proofs are re-
ally straight and interesting. Also there is a good proof at [4]
using Fibonacci numbers. TheBinary GCD algorithmde-
scribed by Knuth [2] as a practically fast algorithm:

”The binary GCD algorithm is an algorithm
which computes the greatest common divisor of
two nonnegative integers. It gains a measure of
efficiency over the ancient Euclidean algorithm
by replacing divisions and multiplications with
shifts, which are cheaper when operating on the
binary representation used by modern comput-
ers. This is particularly critical on embedded plat-
forms that have no direct processor support for
division...”
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2.3 Period of a Number

The reciprocal of every prime p (other than two and five)
has a period, that is the decimal expansion of 1/p repeats in
blocks of some set length [1]. This period isperiod of p. for
example:

1
11

= 0.09
1
7

= 0.142857
1
13

= 0.076923

The first and basic algorithm to find period of a number is
to do the usual divide method just like high school, after
finding a repetitive remainder the quotient is the period of
divisor. But how long should we stay in the loop. Or even,
is endless loop possible? In theorem 3.4 we prove that any
number have its own period.

3 The Repunit Method

In this section we introduce our factorization method
based on repunit numbers, We then, present some related
algorithms to facilitate to work with big repunit numbers.

3.1 Usages of Repunits

This section starts proposing theorem 3.1 which shows
the relation between repunits and prime numbers. Then we
define a new definition calledAdmissible Repunitto a num-
ber. Finally we introduceRepunit Methodwhile necessary
definitions are declared.

3.1.1 Repunits and Primes Relationship

Theroem 3.1 For a given numberp having prime factors
except 2,3 and 5 there is at least one repunit numberRn

whichp | Rn.

Proof. Let’s declarex as follows:

x =
1
p

As x ∈ Q so we can write x in decimal form as follows:

x = 0.b1b2...bna1a2...am

Theorem 3.3 shows thatm exists and is not infinity. Let’s
do the simple high school method to findp from its decimal
form x, it is as simple as follows:

10n+mx− x = b1 . . . bna1 . . . am.a1 . . . am

x =
b1 . . . bna1 . . . am

10n+m − 1

We know thatx = 1
p , sop = 1

x andp is a natural number.

p =
10n+m − 1

b1 . . . bna1 . . . am

So
10n+m − 1 = (b1 . . . bna1 . . . am)p

9Rn+m = (b1 . . . bna1 . . . am)p

Due to assumptionp has not 3 as its divisors, so it can not
count9. Therefore period ofp count9. In another words
b1...bna1...am

9 is a natural number, let’s name itk and then
we have:

Rn+m = kp

So we constructed a repunitRn thatp | Rn. We use the
notationRelatedRepunit(n). as a function that returns the
related repunit for a given numbern. Algorithm 3.2 shows
how to computeRelatedRepunit(n).

Corollary 3.2 Lets probe theorem 3.1 contrary. If there is
a repunit for each prime number, so theset of all repunits
contains all prime numbers. As a result of theorem 3.1 the
following set(Repuniset) covers all prime numbers in the
world.

Repuinset = {11, 111, 1111, . . .}

and for each primep we have this:

p |
∞∏

i=1

Ri

3.1.2 Related Repunit Algorithms

In this section we probe the algorithms to find Related Re-
punit of a number. First in algorithm 3.1 we notice how to
find the number of digits of related repunit. HavingRelat-
edRepunitIndex(n)function makes it easy to construct the
related repunit algorithm. Algorithm 3.2 shows its simple
steps. It is obvious that bottlenecks of Algorithm 3.1 are
these lines:

If(Remainder ∈ RemaindersList)

RemaindersList = RemaindersList ∪ {Remainder}

The complexity of checking whetherRemainder is already
a member ofRemainderList depends on being the list
sorted or unsorted. Considering it sorted it takesO(log n)
using binary search, otherwise it isO(n).

The fact ofRemaindersList being sorted or unsorted
depends on the second line, the method we addRemainder
to RemaindersList in implementation. If we want it to
keep sorted we can useInsertion Sortmethod at each step.
So at each step we do insertion sort with complexity of
O(n) in worst case (we hope it to be much better in real).
But in simple adding the Complexity isO(1).
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RelatedRepunitIndex(n:integer):integer
RemaindersList =∅
Dividend = 10
Divisor = n
RemaindersList = RemaindersList∪ {Devidend}
QuotientLength = 1
While(true)

Remainder = Dividend/Divisor
If ( Remainder∈ RemaindersList ) Then

Break
Else

RemaindersList = RemaindersList∪ {Remainder}
End If
QuotientLength = QuotientLength + 1

Return Quotient

Algorithm 3.1 This algorithm returns the number of digits
of RelatedRepunit(n).

RelatedRepunit(n:integer):integer
Index = RelatedRepunitIndex(n)
Return(10Index − 1)/9

Algorithm 3.2 This algorithm returns
RelatedRepunit(n).

So using sorted or unsorted list force us to have at least
O(n) complexity at each division step. Theorem 3.3 shows
that in the worst case we need to repeat divisionn times.
So final complexity of algorithm using former methods is
O(n2)

Theroem 3.3 For a given numbern there exist a repunit
Rk whichk ≤ n.

Proof. In algorithm 3.1 we search for repetitive remainders.
On the other hand we know that ifr = m mod n thenr can
be one of the numbers of following set:

PossibleRemainders = {0, 1, . . . , n− 1}

The cardinality ofPossibleRemainders set is equal ton.
This shows that at the worst case we will find a repetitive
remainder at least aftern divisions.

Corollary 3.4 The related repunit index equals the length
of period of a numberintroduced before. In fact theorem 3.3
proofs that period of a number’s length is limited.

Having theorem 3.3 limited the floor of remainders count,
we can use a faster algorithm. The faster way is to keep
a bit map for remainders have seen so far. In this way the
computational complexity for each step isO(1) and a total
computation complexity ofO(n). Reaching complexity of
O(n) makes us to have space complexity too. In fact we
need to store an array ofn bits to check if a remainders is
seen before. So the space complexity for Algorithm 3.1 is
O(n).

3.1.3 Repunit Method

Before introducing Repunit Method we defineAdmissible
Repunit. For a composite numbern = n1n2 . . . nk admis-
sible repunit ofn is a repunitRi whichRi is related repunit
of nt for some1 ≤ t ≤ k. Theorem 3.5 shows an important
property of admissible repunits.

Theroem 3.5 SupposeRi as an admissible repunit of n.
GCD(Ri, n) is a factor ofn.

Proof. Considern = n1n2 . . . nk, and due to definition of
admissible repunits, there exits a numbert which nt | Ri.
SoGCD(Ri, n) is a factor ofnt. Let’s take a look back
at the set introduced at Corollary 3.2. Repuniset have some
great properties we which categorize them as follows:

• This set contains all prime numbers within it.
There is no need to generate them first.As we men-
tion at proposition 2.1 it would be better to have an
implicit list of primesto improve the factorization al-
gorithm. Here it is! Instead of creating a list of primes
which is limited and time consuming, we have a set
contains all primes and no need to initiate or generate
it.

Algorithm 3.3 shows a method to factorize a number
using benefits of reupints. In this algorithm we use
GCD instead of division. In factGCD is a great
function. WhenGCD(n, Ri) = 1 for somei, we
understand that numbern has not any factor ofRi.
In this way we use onGCD instead of doing lots of
divisions(for big numbers of course). Algorithm 3.3
uses the concept ofadmissible repunitsimplicitly. In
fact it looks up for the lowest admissible repunit ofn.
But we can ignore one limitation of this algorithm to
achieve more performance.

Why looking for lowest admissible repunit?

Corollary 3.6 One important feature of this algorithm
is that we can surpass our algorithm starting fromk in-
stead of2, and having nothing lost yet. This is one ben-
efit of usingRepuniset. For example we know RSA key
designers do not use little primes as divisors, so why
we should start checking from 2. we can start checking
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FactorizeUsingRepunits(n:integer):integer
For i=2 to n

gcd =GCD(Ri, n)
If gcd 6= 1

returngcd

Algorithm 3.3 Factorizing numbers using repuniset as an
implicit list of primes. This algorithm returns when the first
admissible repunit of numbers found.

from Ri which i can be selected appropriately to the
problem situations.

Now we want concentrate on an specific kind of num-
bers, big numberswhich used in ciphering algorithms
like RSA. There is an important fact about these num-
bers:

These numbers contains two big primes
for more security.

The reason is that the security of cipher depends on
factorizing difficulty which is bound tolowestprime
used in the number. So the cipher developers try to
use big primes with nearly same size. This lead us that
prime numbers are near to:

n
√

BigNumber

n is the number of constructor primes of big num-
ber. In this example we usedn = 2. We present algo-
rithm 3.4 based on this idea.

RelatedRepunitIndexRSA(n:integer, modulo:integer):integer
EstimatedPrime =

√
n

For i = EstimatedPrime To n
If ( GCD(Ri, n) 6= 1 )

returni

Algorithm 3.4 This algorithm works better when RSA as-
sumptions are considered aboutn. In this case we can re-
strict boundaries to look up for admissible repunit ofn

• Storing repuniset consumes considerably low mem-
ory. Consider you want to store all prime factors of

a repunit. There is no need to save all repunit num-
ber. To storeRn you should just store its lengthn. For
example instead of storing:

11111: 41, 271.
111111: 3, 7, 11, 13, 37.
1111111: 239, 4649.

we can use their abbreviated form:

5: 41, 271.
6: 3, 7, 11, 13, 37.
7: 239, 4649.

In fact space complexity of storingRn is O(n) while
it wasO(10n) before.

3.2 Special Algorithms for Repunits

We see the usage of abbreviated forms to maximize
memory performance. But it is useless in real calculation
unless we have appropriate algorithms. ConsiderGCD cal-
culation presented at algorithm 2.2. If one parameter is a big
abbreviated repunit, we should construct it first, then start
to divide. This sounds really bad for big repunits. Here
we present some useful algorithms for repunits which use
the abbreviated form for calculations without need of con-
structing them.

Remember the algorithm 2.2 for calculating GCD. It was
good and fast. But consider finding GCD of aRn and a
numbern. If we use Euclid’s algorithm we can not use ab-
breviated form of repunits. It is obvious that the only prob-
lem is the first division and finding first remainder. After the
first division and finding first remainder the algorithm can
be done in usual manner. But for the first division we need
to calculateRn and use it to find the remainder which can
be impossible due to memory limitations. Algorithm 3.5
calculates the remainder using aDivide&Conquermethod.

Theroem 3.7 The complexity of algorithm 3.5 isO(log n).

Proof. Let’s computeRn modulo m considering two cases,
first assume(n = 2k):

Rn = Rn
2
× 10

n
2 + Rn

2

= Rn
2
× (10

n
2 + 1)

Rn mod m = (Rn
2

mod m)× ((10
n
2 + 1) mod m)

Rn mod m = (Rn
2

mod m)×(((10
n
2 mod m)+1) mod m)

This shows what happened at first part ofRepunitRemain-
der function. Now consider ifn = 2k + 1: In this case we
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RepunitRemainder(n:integer, modulo:integer):integer
If n mod 2 = 0 Then

remExp = ExpRemainder(n
2 ,modulo)

remRep = RepunitRemainder(n
2 ,modulo)

Return((remExp + 1)× remRep) mod modulo
Else

remRep = RepunitRemainder(n−1
10 ,modulo)

Return(remRep× 10 + 1) mod modulo

{A utility function}
ExpRemainder(n:integer, modulo:integer):integer

If n mod 2 = 0 Then
rem = ExpRemainder(n

2 ,modulo)
Return(rem2) mod modulo

Else
rem = ExpRemainder(n− 1,modulo)
Return(rem× 10) mod modulo

End If

Algorithm 3.5 A useful algorithm to do the first step of Eu-
clid’s algorithm.

modify problem to use former case in a recursion manner.
We know thatRn−1 satisfies the former case conditions.

Rn = (10×Rn−1)/10

Rn mod m = 10× (Rn−1 mod m) + 1

In this way we show what happens at the latter case atRe-
punitRemainderfunction.

The proof forExpRemainderis simply like this.
The complexity of this algorithm isO(log n) because it

is aDivide and Conquerormethod which divides each prob-
lem into 2 problems with size ofn2 .

Proposition 3.8 We can applyMemoization[4] on algo-
rithm 3.5 to construct an algorithm based onDynamic Pro-
grammingwhich could run faster on the situation.

4 Conclusion

We complete the paper arguing about the achievements
we reached. Then comparison of our work with the others
help you to sense its progress. As an ending we suggest
some topics for future research.

4.1 Achievements

In this paper we argue about repunits and their important
relation with prime numbers. This relationship holds at the-

orem 3.1. After introducing this relevancy we declared a set
calledRepunisetwhich was very useful. We validated the
fact that this set consists of all primes, so we used it as an
implicit prime list to factorize numbers. Also we noted two
important property of this set:

1. We can store it on computer using its abbreviated form
to decrease space complexity.

2. There is no need to initialize the set, it is already filled.

We then, continued by introducingRelated Repunit and
Admissible Repunit. As a matter of fact we found Admis-
sible Repunit definition very capable to use in factorization
algorithms. The Repunit Method used admissible repunits
to find factors of big numbers.

However we presented an algorithm to factorize numbers
in a way that each step (eachGCD) we throw lots of possi-
ble prime factors out. This gives us the power which we can
start our algorithm with a big offset having nothing lost. In
Repunit method does not work efficient on small numbers.
In fact it is developed specially for big numberswhich are
equivalent to RSA public keys.

4.2 Future Topics of Research

As an ending of our paper we want to make it endless!
Here’s some topics which we consider you can take it and
work on it after reading this paper. We will be happy if you
let us know if you do so.

• Arguing about algorithms for factorizing repunits.

• Implementation of algorithm using powerful hardware
and optimized codes.

• Making guesses aboutRelatedRepunit(n) and also
Admissible Repunitboundaries can improve perfor-
mance of factorization algorithm as we do a little at
algorithm 3.4.
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